Archive for the ‘History of vaporisers’ Category

I am not sure who wrote this little piece, but thanks.

Photographs by me.

An anaesthetic vaporiser is a device generally attached to an anaesthetic machine which delivers a given concentration of a volatile anaesthetic agent.

Anaesthetic vaporiser
The design of these devices takes account of varying ambient temperature, fresh gas flow and agent vapour pressure

Historical vaporisers
Historically, ether (the first volatile agent) was first used by John Snow’s inhaler (1847) but was superseded by the use of chloroform (1848). Ether then slowly made a revival (1862–1872) with regular use via Kurt Schimmelbusch’s “mask”, a narcosis mask for dripping liquid ether. Now obsolete, it was a mask constructed of wire, and covered with cloth.
Pressure and demand from dental surgeons for a more reliable method of administrating ether helped modernise its delivery. In 1877, Clover invented an ether inhaler with a water jacket, and by the late 1899 alternatives to ether came to the fore, mainly due to the introduction of spinal anaesthesia. Subsequently, this resulted in the decline of ether (1930–1956) use due to the introduction of cyclopropane, trichloroethylene, and halothane.                                                                                                 By the 1980s, the anaesthetic vaporiser had evolved considerably; subsequent modifications lead to a raft of additional safety features such as temperature compensation, a bimetallic strip, temperature-adjusted splitting ratio and anti-spill measures.

Modern vaporisers
There are generally two types of vaporisers: plenum and draw over. Both have distinct advantages and disadvantages. A third type of vaporiser is exclusively used for the agent desflurane.

Plenum vaporisers
The plenum vaporiser is driven by positive pressure from the anaesthetic machine and is usually mounted on the machine. The performance of the vaporiser does not change regardless of whether the patient is breathing spontaneously or is mechanically ventilated. The internal resistance of the vaporiser is usually high, but because the supply pressure is constant the vaporiser can be accurately calibrated to deliver a precise concentration of volatile anaesthetic vapour over a wide range of fresh gas flows.                                                                                                                                                                                                     The plenum vaporiser is an elegant device which works reliably, without external power, for many hundreds of hours of continuous use, and requires very little maintenance.
The plenum vaporiser works by accurately splitting the incoming gas into two streams. One of these streams passes straight through the vaporiser in the bypass channel. The other is diverted into the vaporising chamber. Gas in the vaporising chamber becomes fully saturated with volatile anaesthetic vapour. This gas is then mixed with the gas in the bypass channel before leaving the vaporiser.

The performance of the plenum vaporiser depends extensively on the saturated vapour pressure of the volatile agent. This is unique to each agent, so it follows that each agent must only be used in its own specific vaporiser. Several safety systems, such as the Fraser-Sweatman system, have been devised so that filling a plenum vaporiser with the wrong agent is extremely difficult. A mixture of two agents in a vaporiser could result in unpredictable performance from the vaporiser.
Saturated vapour pressure for any one agent varies with temperature, and plenum vaporisers are designed to operate within a specific temperature range. They have several features designed to compensate for temperature changes (especially cooling by evaporation). They often have a metal jacket weighing about 5kg, which equilibrates with the temperature in the room and provides a source of heat. In addition, the entrance to the vaporising chamber is controlled by a bimetallic strip, which admits more gas to the chamber as it cools, to compensate for the loss of efficiency of evaporation.
The first temperature-compensated plenum vaporiser was the Cyprane ‘FluoTEC’ Halothane vaporiser, released onto the market shortly after Halothane was introduced into clinical practice in 1956.

Draw over vaporisers
The draw over vaporiser is driven by negative pressure developed by the patient, and must therefore have a low resistance to gas flow. Its performance depends on the minute volume of the patient: its output drops with increasing minute ventilation.
The design of the draw over vaporiser is much more simple: in general it is a simple glass reservoir mounted in the breathing attachment. Draw over vaporisers may be used with any liquid volatile agent (including older agents such as diethyl ether or chloroform, although it would be dangerous to use desflurane). Because the performance of the vaporiser is so variable, accurate calibration is impossible. However, many designs have a lever which adjusts the amount of fresh gas which enters the vaporising chamber.
The draw over vaporiser may be mounted either way round, and may be used in circuits where re-breathing takes place, or inside the circle breathing attachment.
Draw over vaporisers typically have no temperature compensating features. With prolonged use, the liquid agent may cool to the point where condensation and even frost may form on the outside of the reservoir. This cooling impairs the efficiency of the vaporiser. One way of minimising this effect is to place the vaporiser in a bowl of water.
The relative inefficiency of the draw over vaporiser contributes to its safety. A more efficient design would produce too much anaesthetic vapour.                                                                                                                                                                               The output concentration from a draw over vaporiser may greatly exceed that produced by a plenum vaporiser, especially at low flows. For the safest use, the concentration of anaesthetic vapour in the breathing attachment should be continuously monitored.
Despite its drawbacks, the draw over vaporiser is cheap to manufacture and easy to use. In addition, its portable design means that it can be used in the field or in veterinary anaesthesia.

Dual-circuit gas-vapour blender
The third category of vaporiser (a dual-circuit gas-vapour blender) was created specifically for the agent desflurane. Desflurane boils at 23.5C, which is very close to room temperature. This means that at normal operating temperatures, the saturated vapour pressure of desflurane changes greatly with only small fluctuations in temperature. This means that the features of a normal plenum vaporiser are not sufficient to ensure an accurate concentration of desflurane. Additionally, on a very warm day, all the desflurane would boil, and very high (potentially lethal) concentrations of desflurane might reach the patient.
A desflurane vaporiser (e.g. the TEC 6 produced by Datex-Ohmeda) is heated to 39C and pressurised to 200kPa (and therefore requires electrical power). It is mounted on the anaesthetic machine in the same way as a plenum vaporiser, but its function is quite different. It evaporates a chamber containing desflurane using heat, and injects small amounts of pure desflurane vapour into the fresh gas flow. A transducer senses the fresh gas flow.
A warm-up period is required after switching on. The desflurane vaporiser will fail if mains power is lost. Alarms sound if the vaporiser is nearly empty. An electronic display indicates the level of desflurane in the vaporiser.
The expense and complexity of the desflurane vaporiser have contributed to the relative lack of popularity of desflurane, although in recent years it is gaining in popularity.

A selection of early vaporisers.

An early ether vaporiser made by Coxiter.


A slightly later Boyle’s Trilene vaporiser.

More or less gas was directed down the wide bore metal tube you can see in the glass bottle. The vertical chrome rod with the flat top could be moved up and down by the anaesthetist, on the other end is the wide bore tube where the gas comes out of the bottom of it, if you push the tube right down under the Trilene fluid level you got a higher anaesthetic concentration, the more you lifted the end of the wide bore tube to the surface of the liquid or out of it the lower the concentration given.


Next we have the Emotril.


The one below is the Medrex halothane vaporiser made by Airmed.


The Cardiff inhaler for Penthrane, this was made by Cyprane.


The Cyprane portable ether draw over vaporiser


Cyprane MkIII halothane vaporiser


Penlon’s EMO ether vaporiser.


Penlon’s OMV vaporiser’s, OMV 50 tri-services (L), OMV 30 (R) both draw over vaporisers.



Goldman’s vaporiser.

goldmans (1)

Read Full Post »